From partons to jets and back Simulating QCD interactions at highest energies

Stefan Höche Fermi National Accelerator Laboratory

50 Years of Quantum Chromodynamics UCLA, 09/14/2023

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

QCD simulations before PETRA

[Andersson, Gustafson, Ingelman, Sjöstrand] Phys. Rept. 97(1983)31

- Lund string model: ~ like rubber band that is pulled apart and breaks into pieces, or like a magnet broken into smaller pieces.
- Complete description of 2-jet events in $e^+e^- \rightarrow$ hadrons

QCD simulations before PETRA

[Andersson.Gustafson.Ingelman.Siöstrand] Phys.Rept.97(1983)31

SUBROUTINE JETGEN(N) COMMON /JET/ K(100.2), P(100.5) COMMON /PAR/ PUD. PSI: SIGMA, C12, EBEG, WFIN, IFLBEG COMMON /DATA1/ MEGO(9.2), CHIX(6.2), PMAS(19) IFLSGN=(10-IFLBEG)/5 IPO-D C 1 FLAVOUR AND PT FOR FIRST QUARK IFL1=IABS(IFLBEG) PT1=SIGMA+SQRT(-AL06(PANE(0))) PH11=6.2832*RANF(0) PY1=PT1+SIN(PHI1) 100 1=1+1 C 2 FLAUGUE AND PT FOR NEXT ANTIQUARK AVOUR AND PT FOR NEIT ANTIGUAR IFL2=1+INT(RANF(O)/PUD) PT2=SIGMA+SQRT(-ALOG(RANF(D))) PH12=6.2832*RANF(0) PX2=PT2*COS(PH12) PY2-PT2-SIN(PHIZ) C 3 MESON FORMED, SPIN ADDED AND FLAVOUR MIXED K(I+1)=MESO(3+(IFL1-1)+IFL2+1FLSGN) ISPIN-INT(PS1+BANF(D)) 1F(K(1,1),LE.6) GOTO 110 THIX= PANE (D) KM+K(1:1)-4+3+1SPIN K(I+2)=8+9+ISPIN+INT(THIX+CHIX(KH+1))+INT(THIX+CHIX(KH+2)) C 4 MESON MASS FROM TABLE: PT FROM CONSTITUENTS 110 P(1:5)=PMAS(K(1:2)) P([+2)=PY1+PY2 PNTR=P(1+1)##2+P(1+2)##2+P(1+5)##2 C 5 RANDOM CHOICE OF X=(E+P2)HEBON/(E+P2)AVAILABLE SIVES E AND P2 IF(RANF(0).LT.CX2) X=1.-X**(1./3.)
P(1.3)=(X*W-PMTS/(X*N))/2. P(1.4)=(Y=UAPHTD/(Y=U))/2 C & IF UNSTABLE: DECAY CHAIN INTO STABLE PARTICLES 120 IPD=IPD+1 IF(K(IPD,2).GE.8) CALL DECAY(IPD,1) IF(IPD,LT,I,AND,I,LE,96) GOTO 120 C 7 FLAVOUR AND PT OF WUARK FORMED IN PAIR WITH ANTIQUARK ABOVE C & IF ENOUGH E+PZ LEFT, 60 TO 2 N=(1,-I)*W IF(W.GT.WFIN.AND.I.LE.95) GOTO 100 RETURN END SUBROUTINE LIST(N) COMMON /JET/ K(100,2), P(100,5) COMMON /DATA3/ CHA1(9)+ CHA2(19)+ CHA3(2) WRITE(6:110) D0 100 I=1.N IF(R(1,1).GT.D) C1=CHA1(R(1,1)) IF(K(1,1),LE.D) IC1=-K(1,1) C2=CHA2(K(I+2)) C3=CHA2(((+2-K(I+2)))(20) IF(K(1+1),GT.D) WRITE(6+12D) I; C1+ C2+ C3+ (P(1+J)+ J=1+5) 100 IF(K(1+1).LE.0) WRITE(6+130) I: IC1: C2: C3: (P(1+J): J=1:5) RETURN

110 FORMAT(////T11+'I'+T17+'ORI'+T24+'PART'+T32+'STAB'+ &T44+'PX'+T56+'PY'+T68+'PZ'+T80+'E'+T92+'M'/) 120 FORMAT(10X+12+4X+A2+1X+2(4X+A4)+5(4X+F8,1))

```
130 FORMAT(10X+12+4X+1X+12+2(4X+A4)+5(4X+F8.1))
```

SUBROUTINE DECAY(IP0;I) COMMON /JET/ K(100,2); P(100;5) COMMON /DATA1/ MESO(9:2); CMIX(6:2); PMAS(19) COMMON /DATA2/ 10C0(12)+ CBR(29)+ K0P(29+3) DIMEMPION U(3), RE(3) C 1 DECAY CHANNEL CHOICE, GIVES DECAY PRODUCTS 1DC-1DCD(K(IPD+2)-7) 100 10C+10C+1 ND=(57+K0P(10C+3))/20 D0 110 I1=I+5+I+N0 K(11,2)=KDP(10C,11-1) 110 P(11,5)=PMAS(N(11 C 2 IN THREE-PARTICLE DECAY CHOICE OF INVARIANT MASS OF PRODUCTS 2+3 1F(NO.E0.2) 60TO 130 IF(ND.E0.2) 6010 130 SA=(P(IPD:5)+P(I+1:5))++2 SB=(P(IPD:5)-P(I+1:5))++2 SC=(P(IPD:5)-P(I+1:5))++2 SC=(P(I+2:5)+P(I+3:5))++2 SC=(P(1+2+3)+P(1+3+3))++2 SD=(P(1+2+5)-P(1+3+5))++2 TDU=(SA-SD)+(SD-SC)/(4.+S9RT(SD+SC)) IF(K(IP0+2).GE.11) TDU=SeRT(SB+SC)+TDU++3 120 SX=SC+(BB-SC)#RANF(0) TDF=S9RT((SI-SA)*(SI-SB)*(SX-SC)*(SI-SD))/SX IDF (KIPD-2).GE.13) TDF=SX*TDF*K3 IF (KIPD-2).GE.11) TDF=SX*TDF*K3 IF (RANF(D)*TDU.GT.TDF) GOTO 12D P(100.5)=SQRT(SI) C 3 THO-PARTICLE DECAY IN CN. THICE TO SIMULATE THREE-PARTICLE DECAY 130 D0 160 IL=1+ND-1 I0=(IL-1)+100-(IL-2)+1P0 12-170-1L-1)+100-(N0-1L-2)+(1+1L+1) PARS9RT((P(10:5)++2-(P(11:5)+P(12:5))++2)+ 4(P(10-5)++2-(P(11:5)-P(12:5))++2)/(2,+P(10:5)) 140 U(3)=2.+RANF(0)-1 PHI=6.2832+RANF(0) U(1)=SHRT(1,-U(3)++2)+COB(PHI) U(2)=SHRT(1,-U(3)++2)+SIN(PHI) U(2)=SHRT(1,-U(3)++2)+SIN(PHI) TOA=1,-U(1(3)++2(10,1)+U(2)+P(10,2)+U(3)+P(10,3))++2/ A(P(I0+1)++2+P(10+2)++2+P(I0+3)++2) 1F(K(IP0+2).6E.11.AND.IL.EG.2.AND.RANF(0).6T.TDA) 6010 140 00 150 J=1-3 00 150 J=1,3 P([1,3)=PA+U(3) 150 P([2,3]=-PA+U(3) P([1,4)=S0RT(PA++2+P([1,5)++2) 160 P([2,4)=S0RT(PA++2+P([2,5)++2) C & DECAY PRODUCTS LORENTZ TRANSFORMED TO LAB SYSTEM 00 190 IL-ND-1+1+-1 10=(1L-1)*10D-(1L-2)*1P0 00 170 J=1.3 170 BE(J)=P(ID.J)/P(ID.4) 00 190 11=1+1L+1+ND DO 190 11=1+1L+1+NU REP=RE(1)+P(11+1)+BE(2)+P(11+2)+BE(3)+P(11+3) 00 180 J=1+3 180 P(1+J)=P(1+J)+GA+(GA/(1++GA)+BEP+P(1++4))+BE(J) 190 P([1+4)=GA+(P(]1+4)+BEP) END

\approx 200 punched cards Fortran code

URROUTINE EDIT(N) COMMON /JET/ K(100.2), P(100.5) COMMON /JET/ K(100.2), P(100.5) COMMON /EDPAR/ ITHROH, PIMIN, PMIN, THETA, PMI, BETA(3) SFAL ROI(3,3), PR(3) C 1 THRON AWAY NEUTRALS OR UNSTABLE OR WITH TOO LOW PZ OR P DO 110 2-1-N IF (ITHROW.GE.1.AND.K(I.2).GE.8) GOTO 110 IF (ITHROW.GE.2.AND.K(I.2).GE.6) GOTO 110 IF (ITHROW.GE.3.AND.K(I.2).GE.6) GOTO 110 IF (ITHROW.GE.3.AND.K(I.2).GE.1) GOTO 110 IF(P(1+3).LT.PIMIN.OR.P(1+4)**2-P(1+5)**2.LT.PMIN**2) 60T0 110 K(I1+1)=1DIM(K(I+1)+0) DO 100 J-1-5 100 P([1+J)=P(1+J) 11D CONTINUE M=T-1 C 2 ROTATE TO GIVE JET PRODUCED IN DIRECTION THETA: PH3 IF(THETA.LT.1E-4) GOTO 140 ROT(1+1)=COS(THETA)+COS(PHI) ROT(1,2)=-S1N(PH) BOT(1, T)=SIN(THETA)+COC(PHT) ROT(2:1)=COS(THETA)+SIN(PHI) ROT(2:3)=SIN(THETA)+SIN(PHI) POT(3:1)=-SIN(THETA) ROT(3:2)=0. ROT(3:3)=COS(THETA) 00 130 I=1.N 00 120 J=1.3 120 PR(J)=P(I+J) 00 130 J+1+3 130 P(1+J)=R0T(J+1)+PR(1)+R0T(J+2)+PR(2)+R0T(J+3)+PR(3) C 3 OVERALL LORENTZ BOOST GIVEN BY BETA VECTOR 140 IF(8ETA(1)++2+8ETA(2)++2+8ETA(3)++2.LT.1E-A) RETURN GA=1./B0RT(1.-BETA(1)**2-BETA(2)**2-BETA(3)**2) 00 180 1=1.N D0 180 1=11N
DEF=RETA(1)*P(1+1)*BETA(2)*P(1+2)*BETA(3)*P(1+3) 00 150 J-1.3 150 P(1+J)=P(1+J)+GA+(GA/(1++GA)+BEP+P(1+4))+BETA(J) 160 P(1+4)=GA*(P(1+4)+0EP) RETURN ENO BLOCK DATA DECOMPON /PAR/ PUD, PSS. SIGNA, CE2, EEEC, WFIN, IFLBEG COMMON /CDFAR/ ITHRON, PANIN, PMCN, THETA, PHI, BETA(3) COMMON /OATA// HESO(42), CMX(22), FMA2(2), FMA3(2) COMMON /OATA/ IOCO(12), CBM(29), KDF(29,3) COMMON /OATA/ IOCO(12), CBM(29), KDF(29,3) OATA PUD/0.4/, PSI/0.5/, SIGMA/SGO/, CI2/0.77/, #EBEG/10000./, WFIM/100./, IFLBEG/1/ DATA ITMON//, PTIM/0./, THEEA.PHI.8ETA/5+0./ DATA PRAB/0.12*139.612*491.712*497.7*135.5 42*765.912*892.212*896.31770.21782.511019.6 DATA IDCD/D.114.1112.13(15)17.19.21.2225 DATA CBR/1. (0.381(0.681(0.918(0.959)1.(0.426(0.662(0.757) \$0.980+1.+1.+1.+0.667+1.+0.667+1.+0.667+1.+0.667+1.+0.667+1.+1.+ \$0.899+0.987+1.+0.486+0.837+0.984+1./ DATA KDP/1+1+8+2+1+1+2+8+1+1+1+2+3+6+6+7+5+6+6+5+7+2+2 END

Implementation in a computer program - JETSET, later Pythia

🐉 Fermilab 🛛 2

The gluon changes everything

22.9.80

Neutrino '79: Event 13177 makes history

Image credit: DESY, P. Duinker

‡ Fermilab

3

The gluon changes everything

[Marchesini,Webber] Nucl.Phys.B238(1984)1, [Webber] Nucl.Phys.B238(1984)492 [Andersson,Gustafson,Ingelman,Sjöstrand] Phys.Rept.97(1983)31

- Short distance interactions
 - Signal process
 - QCD radiative corrections
- Long-distance interactions
 - Hadronization
 - Particle decays

Divide and Conquer

- Quantity of interest: Interaction rate
- Convolution of short & long distance physics

$$\sigma_{ee \to h+X} = \sum_{i \in \{q,g\}} \int \mathrm{d}x \underbrace{\hat{\sigma}_{ee \to i+X}(x,\mu_F^2)}_{\text{short distance}} \underbrace{D_i^{(h)}(x,\mu_F^2)}_{\text{long di$$

🕻 Fermilab 4

Fourty years and many discoveries later ...

Image credit: CERN

... it's all about jets

[ATLAS] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults

[CMS] https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

So we need to simulate jets ...

🛟 Fermilab 🛛 7

... lots of jets

[Buckley et al.] arXiv:1101.2599 [Campbell et al.] arXiv:2203.11110

- Short distance interactions
 - Signal process
 - Radiative corrections
- Long-distance interactions
 - Hadronization
 - Particle decays

Divide and Conquer

- Quantity of interest: Interaction rate
- Convolution of short & long distance physics

$$\sigma_{p_1p_2 \to X} = \sum_{i,j \in \{q,g\}} \int \mathrm{d}x_1 \mathrm{d}x_2 \underbrace{f_{p_1,i}(x_1,\mu_F^2) f_{p_2,j}(x_2,\mu_F^2)}_{\text{long distance}} \underbrace{\hat{\sigma}_{ij \to X}(x_1x_2,\mu_F^2)}_{\text{short di$$

The connection to pQCD theory

• $\hat{\sigma}_{ij \to n}(\mu_F^2) \to \text{Collinearly factorized fixed-order result at N^xLO Implemented in fully differential form to be maximally useful Tree level: <math>d\Phi_n B_n$

Automated ME generators + phase-space integrators

1-Loop level: $d\Phi_n \left(B_n + V_n + \sum C + \sum I_n \right) + d\Phi_{n+1} \left(R_n - \sum S_n \right)$

Automated loop ME generators + integral libraries + IR subtraction 2-Loop level: It depends ...

Individual solutions based on SCET, q_T subtraction, P2B

■ $f_i(x, \mu_F^2) \rightarrow \text{Collinearly factorized PDF at NyLO}$ Evaluated at $O(1 \text{GeV}^2)$ and expanded into a series above 1GeV^2 DGLAP: $\frac{\mathrm{d}x \, x f_a(x, t)}{\mathrm{d} \ln t} = \sum_{b=q,g} \int_0^1 \mathrm{d}\tau \int_0^1 \mathrm{d}z \, \frac{\alpha_s}{2\pi} \left[z P_{ab}(z) \right]_+ \tau f_b(\tau, t) \, \delta(x - \tau z)$

Parton showers, dipole showers, antenna showers, ...

Matching:
$$d\Phi_n \ \frac{S_n}{B_n} \leftrightarrow \frac{dt}{t} dz \ \frac{\alpha_s}{2\pi} P_{ab}(z)$$

MC@NLO, POWHEG, Geneva, MINNLO_{PS}, ...

Fixed-order calculations – LO

[Berends,Giele] NPB306(1988)759

10

Tree-level QCD a solved problem, but textbook methods unwieldy

# of gluons	Min. # diagrams	Max. # diagrams
4	3	4
5	10	25
6	36	220
7	133	2485
8	501	34300
9	1991	559405
10	7335	10525900
11	28199	224449225
12	108281	5348843500

Dynamic programming eliminates common subexpressions
 Factorial scaling systematically reduced to exponential

Fixed-order calculations – LO

[Prestel,Schulz,SH] arXiv:1905.05120

Fixed-order calculations – NLO

- General methods for regularization of IR singularities developed ~25 years ago [Frixione,Kunszt,Signer] hep-ph/9512328 [Catani,Seymour] hep-ph/9605323, [Catani,Dittmaier,Seymour,Trocsanyi] hep-ph/0201036
- Generalized unitarity, advanced tensor reduction, reduction at integrand level led to industrialization of 1-loop computations ~2010 [Bern,Dixon,Dunbar,Kosower] NPB435(1995)59, NPB513(1998)3
 [Denner,Dittmaier] hep-ph/0509141, [Binoth,Guillet,Pilon,Heinrich,Schubert] hep-ph/0504267
 [Ossola,Papadopoulos,Pittau] hep-ph/0609007, arXiv:0802.1876, [Forde] arXiv:0704.1835
 [Ellis,Giele,Kunszt] arXiv:0708.2398, [Giele,Kunszt,Melnikov] arXiv:0801.2237, ...
- - Automated tree-like components and phase space: HELAC, Herwig7, MadGraph5, MUNICH, Sherpa, Whizard, ...
 - Automated virtual corrections: BlackHat, Golem95, GoSam, HelacNLO, MadGolem, MadLoop, NJet, OpenLoops, Recola, Rocket, ...
 - Complete, dedicated codes: MCFM, NLOJet++, ...

Fixed-order calculations – NLO

[Bern,Dixon,Febres Cordero,Ita,Kosower,Maître,Ozeren,SH] arXiv:1304.1253 [Anger,Febres-Cordero,Maître,SH] arXiv:1712.08621

Fixed-order calculations – Computing bottlenecks

[HSF Generator WG] arXiv:2004.13687, arXiv:2109.14938

- Event generation will consume significant fraction of resources at LHC soon
- Need to scrutinize both generator usage and underlying algorithms
- Dedicated effort: HEP Software Foundation Generator Working Group

[ATLAS] CERN-LHCC-2022-005 / LHCC-G-182

Fixed-order calculations – Performance portability

[A. Valassi et al., ACAT '22]

- Must keep up with rapidly developing & changing computing architectures
- Portability frameworks SYCL, Kokkos can target most modern platforms

[R. Wang et al., ACAT'22]

🕻 Fermilab

15

- Choice of algorithm must take theoretical, experimental & CS requirements into account
- New theory developments often useful for performance

Fixed-order calculations – Al-assisted integration

Neural Networks used in many different ways to improve event generation [Butter et al.] arXiv:2203.07460

Surrogate model techniques

- Hit or miss w/ NN estimate
 - An order of magnitude faster
 - Insufficient training leads to large uncertainties, but no bias
 - Needs existing sample to train
- Generate events with GANs
 - Orders of magnitude faster
 - Needs existing sample to train
 - Bias if not trained right

Variabe transformation techniques

- Normalizing flows
 - Learn integrand to improve importance sampling
 - Insufficient training leads to large uncertainties, but no bias
 - Events generated from scratch no pre-existing sample required
 - Resulting events still need to be unweighted

Parton showers, dipole showers and all that

$$\begin{split} \sigma_{\rm incl} \Bigg[\Delta(t_c,Q^2) \\ &+ \int_{t_c}^{Q^2} \frac{\mathrm{d}t}{t} \int \mathrm{d}z \frac{\alpha_s}{2\pi} P(z) \, \Delta(t,Q^2) \\ &+ \frac{1}{2} \bigg(\int_{t_c}^{Q^2} \frac{\mathrm{d}t}{t} \int \mathrm{d}z \frac{\alpha_s}{2\pi} P(z) \bigg)^2 \Delta(t,Q^2) \end{split}$$

 $+ \dots$

Radiative corrections as a branching process

[Marchesini,Webber] NPB238(1984)1 [Sjöstrand] PLB157(1985)321

Probability for parton splitting in collinear limit

$$\lambda \to \frac{1}{\sigma_n} \int_t^{Q^2} \mathrm{d}\bar{t} \, \frac{\mathrm{d}\sigma_{n+1}}{\mathrm{d}\bar{t}} \approx \sum_{\mathrm{jets}} \int_t^{Q^2} \frac{\mathrm{d}\bar{t}}{\bar{t}} \int \mathrm{d}z \frac{\alpha_s}{2\pi} P(z) \, dz$$

Perturbative unitarity leads to a Markov process

- Assume bosonic final state \rightarrow naive probability for *n* emissions $P_{\text{naive}}(n,\lambda) = \frac{\lambda^n}{n!}$
- Probability conservation implies no-emission probability

$$\begin{split} P(n,\lambda) &= \frac{\lambda^n}{n!} \exp\{-\lambda\} \qquad \longrightarrow \qquad \sum_{n=0}^{\infty} P(n,\lambda) = 1\\ \Delta(t,Q^2) &:= \exp\{-\lambda\} \rightarrow \text{Sudakov factor} \end{split}$$

Practical challenges

- Four-momentum conservation
- On-shell conditions
- Color conservation

Soft radiation and matching to collinear result

[Marchesini,Webber] NPB238(1984)1, NPB310(1988)461

Eikonal can be written in terms of energies and angular "radiator" function

$$J_{\mu}J^{\mu} \to \frac{2p_{i}p_{k}}{(p_{i}p_{j})(p_{j}p_{k})} = \frac{W_{ik,j}}{E_{j}^{2}} , \qquad W_{ik,j} = \frac{1 - \cos\theta_{ik}}{(1 - \cos\theta_{ij})(1 - \cos\theta_{kj})}$$

Collinearly divergent as $\theta_{ij} \to 0$ and as $\theta_{kj} \to 0$

 \rightarrow Expose individual singularities via $W_{ik,j} = \tilde{W}^i_{ik,j} + \tilde{W}^k_{ki,j}$

$$\tilde{W}_{ik,j}^{i} = \frac{1}{2} \left[\frac{1 - \cos \theta_{ik}}{(1 - \cos \theta_{ij})(1 - \cos \theta_{kj})} + \frac{1}{1 - \cos \theta_{ij}} - \frac{1}{1 - \cos \theta_{kj}} \right]$$

- Azimuthal averaging yields famous angular ordering
 - Differential radiation pattern outside parent dipole more intricate Positive & negative contributions sum to zero

Dual description and the Lund plane

[Gustafson] PLB175(1986)453

Compute everything in center-of-mass frame of fast partons

Simple expressions for transverse momentum and rapidity

$$p_T^2 = \frac{2(p_i p_j)(p_k p_j)}{p_i p_k}$$
, $\eta = \frac{1}{2} \ln \frac{p_i p_j}{p_k p_j}$

In momentum conserving parton branching $(\tilde{p}_i, \tilde{p}_k) \rightarrow (p_i, p_k, p_j)$

$$-\ln \tilde{s}_{ik}/p_T^2 \le 2\eta \le \ln \tilde{s}_{ik}/p_T^2$$

Differential phase-space element $\propto dp_T^2 d\eta$

- Visualized best in Lund plane
 - Gluon emission probability is constant
 - QCD evolution creates fractal structure
 - Recent revival in experimental analyses

Angular ordered parton showers

[Marchesini,Webber] NPB238(1984)1, ...

Differential radiation probability

$$\begin{split} \mathrm{d}\mathcal{P} &= \mathrm{d}\Phi_{+1}|M|^2 \approx \frac{\mathrm{d}\tilde{q}^2}{\tilde{q}^2} \,\mathrm{d}z \,\frac{\alpha_s}{2\pi} \,P_{\tilde{\imath}ji}(z) \\ \bullet & \text{Ordering parameter } \tilde{q}^2 = \frac{2p_i p_j}{z(1-z)} \approx 4E_{\tilde{\imath}j}^2 \sin^2 \frac{\theta_{ij}}{2} \end{split}$$

Lund plane filled from center to edges

- Random walk in p_T^2
- Color factors correct for observables insensitive to azimuthal correlations
- Small dead zone at $\ln(p_T^2/\tilde{s}) \approx 0$

Dipole & antenna showers

[Gustafson,Pettersson] NPB306(1988)746, ...

Differential radiation probability for the dipole

$$\mathrm{d}\mathcal{P} = \mathrm{d}\Phi_{+1}|M|^2 \approx \frac{\mathrm{d}p_T^2}{p_T^2} \,\mathrm{d}\eta \,\frac{\alpha_s}{2\pi} \,\tilde{P}_{\tilde{\imath}\tilde{\jmath}}(z)$$

• Ordering parameter p_T^2

Lund plane filled from top to bottom

- Random walk in η
- Color factors in CFFE approximation
- Pairs of partons evolve simultaneously
- No dead zones
- Solves problem of dead zones
 Known issues with color coherence

Getting color charges right on average

- In angular ordered showers angles are measured in the event center-of-mass frame → coherence effects modeled by angular ordering variable agree on average with matrix element
- In dipole-like showers angles effectively measured in center-of-mass frame of emitting color dipole → angular coherence not reflected by setting average QCD charge

Emission off "back plane" in Lund diagram should be associated with C_F , but is partly associated with $C_A/2$ in dipole showers

[Gustafsson] NPB392(1993)251

Getting color charges right on average

[Gustafsson] NPB392(1993)251

🕻 Fermilab

24

- Analyze rapidity of gluon emission in event center-of-mass frame
- Sectorize phase space, use color charge of parton closest to soft gluon

■ Alternatively reweight to double-soft ME [Giele,Kosower,Skands] arXiv:1102.2126 Algorithm scales as N² but can be simplified while retaining accuracy → Nested double-soft corrections in rapidity segments of parent dipole [Hamilton,Medves,Salam,Scyboz,Soyez] arXiv:2011.10054

- Starting with 4 emissions, there be "color monsters" [Dokshitzer, Troian, Khoze] SJNP47(1988)881, YF47(1988)1384
 - Quartic Casimir operators (easy)
 - Non-factorizable contributions (hard)

The problem of on-shell momentum mapping

[Dasgupta,Dreyer,Hamilton,Monni,Salam] arXiv:1805.09327

 Subtle problems in standard dipole, dipole-like and antenna mapping

- Induces accidental angular correlations
 Spoils agreement w/ analytic resummation
- Good recoil schemes preserve logarithmic accuracy, but also impact phase-space coverage, especially for angular ordered evolution [Bewick,Ferrario-Ravasio,Richardson,Seymour] arXiv:1904.11866

NLL compatible on-shell momentum mappings

Partitioning of antenna radiation pattern paired with suitable choice of evolution variable [Dasgupta,Dreyer,Hamilton,Monni,Salam,Soyez] arXiv:2002.11114

$$k_T = \rho v e^{\beta |\bar{\eta}|} \qquad \rho = \left(\frac{s_i s_j}{Q^2 s_{ij}}\right)^{\beta/2}$$

- Global transverse recoil, global longitudinal recoil gives analytic proof of NLL correctness for dedicated observables (thrust, multiplicity) [Forshaw,Holguin,Plätzer] arXiv:2003.06400
- Local transverse recoil, global longitudinal recoil allows analytic proof of NLL correctness, based on kinematics in $s \to \infty$ limit [Nagy,Soper] arXiv:2011.04773
- Keeping emitter along original direction & recoil vector arbitrary allows to match analytic resummation and prove NLL precision analytically [Herren,Krauss,Reichelt,Schönherr,SH] arXiv:2208.06057

Approximate soft NLO corrections

Leading higher-order corrections to soft-gluon effects from collinear decay

+ ... =
$$\sum_{b=q,g} j_{ij,\mu}(p_{12})j_{ij,\nu}(p_{12}) \frac{P_{gb}^{\mu\nu}(z_1)}{s_{12}}$$

Add semi-classical contributions \rightarrow 2-loop cusp anomalous dimension

$$\Gamma_{\rm cusp}^{(2)} = \left(\frac{67}{18} - \frac{\pi^2}{6}\right) C_A - \frac{10}{9} T_R n_f$$

Soft splitting function with estimated higher-order corrections

$$P_{aa}(z) \xrightarrow{z \to 1} \frac{2C_a}{1-z} \left[1 + \frac{\alpha_s(\mu^2)}{2\pi} \left(-\beta_0 \ln \frac{k_T^2}{\mu^2} + \Gamma_{\text{cusp}}^{(2)} \right) \right]$$

Origin of CMW scheme [Catani,Marchesini,Webber] NPB349(1991)635 De-facto standard in generator community for past ~30 years

Complete soft NLO corrections at leading color

- Need a benchmark for parton shower to reproduce
 - \rightarrow soft-gluon resummed expression of Drell-Yan or DIS cross section

$$\frac{1}{\sigma} \frac{d\sigma(z, Q^2)}{d\log Q^2} = \mathcal{H}(Q^2) \, \widetilde{W}(z, Q^2)$$

RGE governed by Wilson loop \widetilde{W} (Q(1-z) - total soft gluon energy) Non-abelian exponentiation theorem allows to expand as

$$\widetilde{W} = \exp\left\{\sum_{i=1}^{\infty} w^{(n)}\right\}$$

One-loop result [Marchesini,Korchemsky] PLB313(1993)433, hep-ph/9210281

$$w^{(1)} = C_F \frac{\alpha_s(\mu)}{2\pi} \left[\ln^2 L + \frac{\pi^2}{6} \right] , \qquad L = -\frac{b_+ b_-}{b_0^2} , \qquad b_0 = \frac{2 e^{-\gamma_E}}{\mu}$$

Two-loop result [Belitsky] hep-ph/9808389

$$w^{(2)} = C_F \frac{\alpha_s^2(\mu)}{(2\pi)^2} \left[-\frac{\beta_0}{6} \ln^3 L + \Gamma_{\rm cusp}^{(2)} \ln^2 L + 2\ln L \left(\Gamma_{\rm soft}^{(2)} + \frac{\pi^2}{12} \beta_0 \right) + \dots \right]$$

Complete soft NLO corrections at leading color

[Ferrario Ravasio et al.] arXiv:2307.11142

[Dulat,Prestel,SH] arXiv:1805.03757

- Implementation in publicly available MC (Pythia)
- Uncertainty bands no longer just estimates, but perturbative QCD predictions for the first time
- Good agreement with CMW (leading soft effects)

Collinear higher-order corrections

[Prestel,SH] arXiv:1705.00742

DGLAP evolution kernels obtained from factorization

- $P_{ji}^{(n)}$ not probabilities, but sum rules hold (\leftrightarrow unitarity constraint) In particular: Momentum sum rule identical between LO & NLO
- Can perform the NLO computation of P⁽¹⁾_{ji} fully differentially using modified dipole subtraction, e.g.

$$P_{qq'}^{(1)}(z) = C_{qq'}(z) + I_{qq'}(z) + \int d\Phi_{+1} \Big[R_{qq'}(z, \Phi_{+1}) - S_{qq'}(z, \Phi_{+1}) \Big]$$

Combined soft & collinear higher-order corrections

[Hartgring,Laenen,Skands] arXiv:1303.4974 [Li,Skands] arXiv:1611.00013, [Campbell,Li,Preuss,Skands,SH] arXiv:2106.10987

- ME-corrected showers predict correct 2-emission pattern → possibility to extend to full NLO by including virtual corrections
- Can be turned into complete NLO-accurate emission generator by filling missing phase space with direct $2 \rightarrow 4$ transitions (hard corrections)

31

Parton showers beyond leading color accuracy

- Simplify soft insertion operators $T_i T_k \rightarrow T_i^2$ but retain bra/ket states exactly
- Extend to higher number of terms in 1/N_c through additional operators
- Amplitude based evolution using color flow decomposition [DeAngelis,Forshaw,Plätzer] arXiv:2007.09648
 - Systematic expansion in $1/N_c$ terms related to number of swaps of color lines

Heavy flavor production & evolution

- Example ttbb: MC single largest source of uncertainty on signal strength
- Despite intense study of HF production
 - Fixed order, NLL, FONLL [Cacciari,Frixione,Houdeau,Mangano,Nason,Ridolfi,...] arXiv:1205.6344, hep-ph/0312132, hep-ph/9801375, NPB373(1992)295
 - In context of particle-level Monte Carlo [Norrbin,Sjöstrand], hep-ph/0010012, [Gieseke,Stephens,Webber] hep-ph/0310083, [Schumann,Krauss] arXiv:0709.1027, [Gehrmann-deRidder,Ritzmann,Skands] arXiv:1108.6172

Recurring themes, not special to $t\bar{t}b\bar{b}$

- PS uncertainties hard to judge and reduce [Cascioli,Maierhöfer,Moretti,Pozzorini,Siegert] arXiv:1309.591
- Matching needed for inclusive predictions [Krause,Siegert,SH] arXiv:1904.09382, [Ferencz,Katzy,Krause,Pollard,Siegert,SH]

[ATLAS] arXiv:1712.08895

Heavy flavor production & evolution

- Both high-energy limit and threshold region should be described well, but
- Infrared finite prediction for $g \rightarrow Q\bar{Q}$ leaves splitting functions somewhat arbitrary
- Soft gluon emission off light/heavy quarks associated with $\alpha_s(k_T^2)$, i.e. "correct" scale is k_T^2 [Amati et al.] NPB173(1980)429, but no such argument to set scale for $g \to Q\bar{Q}$

 \rightarrow HQ production rate not very stable w.r.t. parton shower variations

A number of different prescriptions, e.g. [Norrbin,Sjöstrand], hep-ph/0010012, [Gieseke,Stephens,Webber] hep-ph/0310083, [Schumann,Krauss] arXiv:0709.1027, [Gehrmann-deRidder,Ritzmann,Skands] arXiv:1108.6172, [Assi,SH] arXiv:2307.00728

varying success in describing expt. data

[Norrbin,Sjöstrand] hep-ph/0010021

🗱 Fermilab

34

Matching fixed-order calculations to parton showers

Matching fixed-order calculations to parton showers

Two major techniques to match NLO calculations and parton showers

Additive (MC@NLO-like)

[Frixione,Webber] hep-ph/0204244

- Use parton-shower splitting kernel as an NLO subtraction term
- Multiply LO event weight by Born-local K-factor including integrated subtraction term and virtual corrections
- Add hard remainder function consisting of subtracted real-emission correction

Multiplicative (POWHEG-like)

[Nason] hep-ph/0409146

- Use matrix-element corrections to replace parton-shower splitting kernel by full real-emission matrix element in first shower branching
- Multiply LO event weight by Born-local NLO K-factor (integrated over real corrections that can be mapped to Born according to PS kinematics)

Basis of matching – Modified subtraction

[Frixione,Webber] hep-ph/0204244

NLO calculation of observable O

$$\langle O \rangle = \int \mathrm{d}\Phi_B \left\{ \mathrm{B} + \tilde{V} \right\} O(\Phi_B) + \int \mathrm{d}\Phi_R \, \mathrm{R} \, O(\Phi_R)$$

Parton-shower result until first emission ($\Delta^{(K)}(t) = \exp \left\{ -\int_t d\Phi_1 K(\Phi_1) \right\}$)

$$\begin{split} \langle O \rangle &= \int \mathrm{d}\Phi_B \operatorname{B} \left[\Delta^{(\mathrm{K})}(t_c) \, O(\Phi_B) + \int_{t_c} \mathrm{d}\Phi_1 \, \mathrm{K}(\Phi_1) \, \Delta^{(\mathrm{K})}(t(\Phi_1)) \, O(\Phi_R) \right] \\ &\stackrel{\mathcal{O}(\alpha_s)}{\to} \int \mathrm{d}\Phi_B \operatorname{B} \left\{ 1 - \int_{t_c} \mathrm{d}\Phi_1 \, \mathrm{K}(\Phi_1) \right\} O(\Phi_B) + \int_{t_c} \mathrm{d}\Phi_B \, \mathrm{d}\Phi_1 \, \mathrm{B} \, \mathrm{K}(\Phi_1) \, O(\Phi_R) \end{split}$$

• Overlap removal at $\mathcal{O}(\alpha_s)$ must be accurate for all IRC safe observables First solution in MC@NLO method, others are variants of this scheme

$$\langle O \rangle = \int \mathrm{d}\Phi_B \,\bar{\mathrm{B}}^{(\mathrm{K})} \,\mathcal{F}_{\mathrm{MC}}^{(0)}(\mu_Q^2, O) + \int \mathrm{d}\Phi_R \,\mathrm{H}^{(\mathrm{K})} \,\mathcal{F}_{\mathrm{MC}}^{(1)}(t(\Phi_R), O)$$

MC events fall into categories, Standard and $\mathbb{H}ard$

$$S \rightarrow \bar{B}^{(K)} = B + \tilde{V} + B \int d\Phi_1 K(\Phi_1)$$
$$\mathbb{H} \rightarrow H^{(K)} = R - B(\Phi_B(\Phi_R)) K(\Phi_1)$$

🛟 Fermilab 37

Fixed-order matching – NLO

[Nason,Webber] arXiv:1202.1251

Matching interpolates smoothly between fixed-order & resummation

Fixed-order matching – N²LO

 \blacksquare $p_{T,H}$ and ATLAS data

y_H and CMS data

Fixed-order matching – N²LO

[Gavardi,Oleari,Re] arXiv:2204.12602

Data

500 1000

m_w [GeV]

NNLOJET

SHERPA

Good description even of challenging multi-scale dynamics like in $\gamma\gamma + X$

Comparison between ATLAS data and MINNLO_{PS} Previous experimental analysis [ATLAS] arXiv:2107.09330

50 100 200

 $\sqrt{s} = 13$ TeV. 139 fb⁻¹

Residual uncertainties – N²LO matching

[Bellm at al.] arXiv:1903.12563 [D. Napoletano] arXiv:2212.10489, [Alioli et al.] arXiv:2102.08390

Choice of parton shower

Choice of resolution variable

Merging calculations of varying jet multiplicity

Contract Fermilab 42

QCD prediction of multi-jet dynamics

[ATLAS] arXiv:1304.7098

Drell-Yan lepton pair plus multi-jet production at the LHC

Lessons from HERA

Simulation often too focused on resonant contributions

Need be inclusive to describe DIS, low-mass Drell-Yan or photon / diphoton production

[Carli,Gehrmann,SH] arXiv:0912.3715

Half a century of teamwork ...

... and we're only getting started

Fixed-order calculations

- Higher-order matrix element calculations
- Higher-order fully differential IR subtraction
- Computing improvements
- Parton showers
 - Improved logarithmic precision
 - Higher-order splitting kernels
 - Interplay with analytic resummation
- Matching and merging
 - The role of unitarity constraints
 - Interplay with analytic resummation
 - Fully differential higher-order matching

Apologies for only selecting a small subset of topics For a comprehensive overview: [Campbell et al.] arXiv:2203.11110

Whatever the future may hold ...

[Gray] Rev.Phys. 6 (2021) 100053

... nothing goes without QCD

📲 🛟 Fermilab 🛛 48